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Absfracf - We present an efficient modal approach in 
combination with the Finite Integration Technique (FIT) - a 
generalized FDTD-like method - to analyze resonant struc- 
tures. Rather than performing time-consuming time-stepping 
of long transients, the eigenmodes of the spatial discretiza- 
tion operators are utilized to extract frequency-domain pa- 
rameters of the simulated devices. As an application we cal- 
culate averaged material parameters of recently proposed so- 
called metsmaterials, which show a distinctive resonant he 
havior with negative permittivity and permeability in a cer- 
tain frequency range. 

I. IWR~D~CTI~N 

Grid-based simulation methods like the Finite Differ- 
ence Time Domain (FDTD) method, Finite Element (FE) 
approaches or the Finite Integration Technique (FIT) - the 
latter is used in this paper - are powerful tools for the 
analysis of microwave devices. This is especially true for 
time domain approaches, where broadband results e.g. for 
the scattering parameters can be obtained by a single 
simulation run with appropriate input signals. 

However, new problems arise with the simulation of 
highly resonant devices, where, due to the long settling 
times, the time domain approach requires a large number 
of time steps to reach steady state. If  the goal of the simu- 
lation is a precise prediction of the system’s response near 
a resonance, the use of approximate techniques, such as 
introducing artificial losses or non-conservative time inte- 
gration schemes, is not acceptable. On the other hand, a 
conventional eigenvalue analysis (in frequency domain) 
of the ‘closed’ structure, with short circuits at the in- 
put/output ports, only gives a hint on the resonance fre- 
quencies, but no quantitative results for the behavior of 
the original (open) device around that frequency. 

One example of such a resonant structure, which will be 
dealt with in this paper, is the calculation of averaged ma- 
terial coefficients in so-called metamaterials [ 1,2,3]. 
Me&materials consist of a lattice of conducting, nonmag- 
netic elements that can be described by an effective mag- 
netic permeability ,~and an effective electrical permittiv- 
ity off, both of which can exhibit values not found in natu- 
rally occurring materials. Typically each cell of the lattice 

represents a resonant structure with spatial dimensions 
much smaller than the incident wavelength. The effective 
material parameters can then be defined as the ratios of 
averaged field and flux quantities over one cell [l]. The 
task for the numerical simulation is to extract these pa- 
rameters from the 
frequency range. 

electromagnetic fields over a certain 

For the analysis of these resonant structures we present 
here an efficient modal approach, which was previously 
used for the calculation of scattering parameters in 141. 
This method is based on an incomplete eigenvalue de- 
composition of the spatial system matrix, and no time- 
stepping has to be performed. As underlying discretization 
scheme we use the Finite Integration Technique (FIT), 

which can be considered as a generalized finite difference 
method and which has close relations to the well-known 
FDTD-method. 

II. THE FINITE INTEGRATION TECHNIQUE (FIT) 

A. Basics and Notation of FIT 

Similar to the FDTD method, the Finite Integration 
Technique [5,6] uses a pair of staggered grids, the primary 
grid G and the dual grid G, which however can have a 
more general structure as the standard “Yee cell” of 
FDTD. The state variables of FIT are so-called grid volt- 
ages and grid f&es which are defined as integrals of the 
electric and magnetic fields on edges Lj, & or faces 

4, 4 of G and 6, respectively: 

Using this kind of state variables, an exact representa- 
tion of the integral form of Faraday’s and Ampere’s law 
applied to facets of the grids can be found. In matrix- 
vector form, the so-called Maxwell’s Grid Equations [5] 
read 
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with the curl-matrix C and the vectors of voltages and 

fluxes ^e, i and i, i, 7 , respectively. The approximations 

of the method finally take place in the material matrices 
(the discrete constitutive relations), given here for the lin- 
ear case: 

ii=M,& i=M,i, j=M,S+& (3) 

(z = source currents). For dual orthogonal grid systems 

M, , M, , and M, are diagonal matrices. 

If  we apply FIT on Cartesian grids (the ‘Yee-cell’) and 
use the leap-frog scheme for the time-integration of (2), 
we obtain the same update equations as in FDTD. Thus, 
(2) can be considered to describe also the spatial discreti- 
zation of FDTD [ 61. 

In frequency domain we can eliminate the magnetic 
voltages h in (2) and obtain the discrete curl-curl- 
equation (for the lossless case with M, = 0 ): 

(M;‘CTM;‘C-&)5=-joM,‘i. (4) 

T 

It can be easily shown that the curl-curl system matrix 
Act has only real eigenfrequencies wi, corresponding to 
undamped oscillating resonant modes in lossless struc- 
tures. It is a standard task of many electromagnetic sitiu- 
lation codes to calculate the dominant eigensolutions of 
AC,-, i.e. the resonant modes with lowest frequencies 
oi > 0. These modes will be used in this paper to deter- 
mine the averaged material quantities in a frequency range 
around the resonance, thus avoiding a costly time domain 
simulation with long transients until steady state. 

For the simulation of metamaterials in time domain, we 
would need an incident wave excitation as well as imple- 
mentations of open and periodic boundary conditions. 
Such open boundary conditions, if transformed back to 
frequency domain, would introduce losses in our model, 
leading to a complex system matrix and many difficulties 
in solving the corresponding eigenvalue equation. How- 
ever, we will demonstrate, that at least for a non-oblique 
incidence of plane waves it is sufficient to consider only 
one element of the lattice and the lossless formulation 
given by (4). 

B. Extraction of Eflective Material Parameters 

Once we have calculated a monofrequent field pattern 
(a solution 2 of (4) for a given frequency and the related 

vectors $6, i; ), the next step is to extract averaged field 
quantities. This averaging process, motivated by a macro- 
scopic view of the cells of the lattice [l], is performed 
according to (e.g. for the magnetic x-components) 

where LX and S, are the corresponding edge and the sur- 
face of the cell, respectively. The related effective mate- 
rial coefficient is finally defined by 

&,A4 = we~,,(4 Hx,,W . (6) 

For the discrete solutions L(W) and $0) = M, h(w) 
the integrations in (5) can be represented by simple sum- 
mations of specific voltage or flux components (cf. their 
definition in (1)): 

Hx,W = P;&)> 4,W = P~M,@~). (7) 

Here the integration paths as well as the averaging coef- 
ficients are included in the path vectors pLx (containing 
only {0,*1/L,}) and psll (containing only {0+1/S,}). 

IILMODALAPPROACH 

A. Basic Approach 

In the modal approach [4], the solution of the curl-curl 
equation (4) is expressed as a sum of (ortho-normalized) 
eigenvectors of the system matrix: 

C(w) = &Ci O-9 

with 

A& = w;Si and O;M,G, = 6,. (9) 

From (4) we obtain the simple formula for the unknown 
coefficients a, : 

. -T7 
-J@ e, Js a,(o)=-. 
C$ -ld 

(10) 

Thus, instead of solving a linear system of equations for 
each frequency point, we can also determine the eigenso- 
lutions of the curl-curl system matrix and evaluate the 
explicit formulas (10) and (8). 

Of course, for an exact solution of (4) using this ap- 
proach all eigensolutions of the system matrix would be 
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needed. For realistic problem sizes this can not be 
achieved, and we have to use the incomplete expansion 

5(w) = ~q(w)e, + &.Jw) (11) 
I 

with p *: dim(A,) (typically p I lO..lOO) and a correc- 

tion term gc,,W(w) . 
From the result for the coefftcients a,(w) in (10) it is 

obvious, that the dominant modes (having the strongest 
frequency dependency) are as expected those with reso- 
nance frequencies w, = w , and as a minimum a certain 
number of these modes must be considered in the expan- 
sion. Moreover, the contribution of the remaining (non- 
considered) modes can be assumed to be approximately 
constant in the near of the resonance. This leads to a sim- 
ple correction approach, where a constant &, is calcu-, 
lated as a solution of (4) at a fixed frequency within the 
range of interest. Since a good start vector for an iterative 
solvers is available with the modal part of (1 l), this solu- 
tion of a system of equations is computationally cheap. 

A more sophisticated correction approach, involving the 
solution of a second eigenvalue problem with varied 
boundary conditions, has been proposed in [4]. 

B. Excitation Strategy 

The extraction of effective material parameters requires 
a monofrequent field solution in the lattice, or at least in 
one cell of the lattice (from a simulation including peri- 
odic boundaries.) 

The simplest case of an appropriate setup is shown in 
Fig. 1: The periodic&y in the transversal directions is real- 
ized by two pairs of magnetic (PMC) and electric (PEC) 
boundary conditions, respectively. Thus, the field pattern 
of the exciting planar wave is equivalent to a waveguide 
excitation (parallel plate guide) of the strnctnre. 

Fig. 1. Modeling of the periodic lattice by a single cell with 
appropriate boundary conditions and excitations. 

This setup allows to model the cell as a two-port-device 
with generalized input currents i, and i*, and output volt- 
ages ul, and u2, respectively. To obtain a periodic solution 
in the direction of the incident wave, these port quantities 
must satisfv , 

the coupling coefficients ZfS between these modes and 
the excitation currents are available, the remaining steps 
require neglectible computation time for an arbitrary 

number of frequency points. By a proper implementation 
of the formulas it can even be achieved that the field solu- 
tions (step 4c) need not be explicitly constructed and 
stored. 

u2 =u,.e-ip, iz = -j, . .-C , (12) 

with 4 = k .lz the phase angle of the wave and lZ the 
length of one cell. Using 

(u,:-ip)z(~: z)(-, !e-ip)’ (13) 

where the system’s impedance matrix Z can readily be 
calculated by the modal approach above, this leads to the 
dispersion relation between k and w of the macroscopic 
wave: 

e -iv= = y * y -1, y = 
P- 

4lyii~ (14) 
. 12 

Note that here also complex wave numbers k (describing 
attenuated waves) are allowed, and the sign in (14) has to 
be chosen accordingly. 

The exciting current distribution at the port planes is 
calculated from the magnetic field pattern of the 2D 
waveguide mode (solution of a related discrete eigenvalue 
problem for its cross-section). 

C. Metamaterial Simulation 

Now we have all components to perform the simulation 
of the me&materials: 

Determine the discrete mode pattern at the port 
planes of one cell of the array, and transform them 
into equivalent surface currents. 
Calculate a number of 3D eigenmodes of the cell 
with PMC boundaries of at the ports. 
Calculate the correction vector(s). 
For each frequency: 
a) Calculate the impedance matrix from the mo- 

dal approach using (10) and (11). 
b) Calculate the phase angle according to (14) 

and construct the input currents at both ports. 
c) Calculate field solutions for this excitation. 
d) Extract averaged fields and calculate material 

parameters grand kp 

this procedure is due to 
problem (step 2). Once 
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II. NUMERICAL RESULTS 

Fig. 2 (taken from [3]) shows a metamaterial consisting 
of an array of split ring resonators (SRRs) and accompa- 
nying wires, which has been subject to measurements as 
well as simulations before ([3], and in a simplified form in 
[2]). In the grid model - all simulations are based on the 
commercial code CST MICROWAVE STUDIO (MWS, [7]) - 
one cell of the lattice is discretized with a rather coarse 
mesh with only 1,980 grid points (also shown in Fig. 2). 
Due to the small dimensions of the SRR, this is still 
equivalent to more than 100 lines per wavelength. To be 
able to model the geometric details of the SRR in this 
mesh we apply the PBATM-technique incorporated in 
MWS. 

Fig. 2. SRR-type me&material (taken from [31) and one cell 
of the array in the simulation model. 

As a reference we performed an eigemnode analysis 
(with the same grid model) with periodic boundaries, as 
described in [2]. Here a complex hermitian eigenmode 
problem has to be solved several times for a varying phase 
angle 9 between 0 to 180”. From the eigenfrequencies one 
gets the dispersion relation ru@), and the eigenvectors can 
be used for the material averaging. 

In the modal approach (with and without correction 
term) between 1 and 12 eigenmodes are used. Like in (21, 
models with and without the wire have been studied. 

The resulting curve for the effective permeability (cf. 
Fig. 3) shows the desired resonance at approximately 
3.66 GHz. It turns out, that with the correction term one 
single mode is sufficient to reproduce the frequency be- 
havior of ~fi whereas without correction at least 10 
modes are needed for an accurate result. The agreement 
with the reference is very good. 

II. CONCLUSIONS 

For the computation of effective material parameters in 
metamaterials a modal approach in combination with the 
Finite Integration Technique (or FDTD) has been pre- 
sented. The field solution in single cells of the array is 
constructed by an incomplete expansion in eigemnodes of 

the closed structure. For the highly resonant behavior of 
metamaterials the new method &r& out to be superior to 
time domain methods, since only a small number of 
modes is needed to reproduce the typical resonance 
curves. It has also been demonstrated that a correction 
term compensating the missing modes is very important to 
obtain accurate results with moderate cost. 
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Fig. 3. Simulation results: Real part of the effective perme- 
ability Re{ pefl}: Reference solution (periodic eigenvalue analy- 
sis), modal approach with correction and varying number of 
considered eigenmodes (indistinguishable curves). 
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