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Abstract — We present an efficient modal approach in
combination with the Finite Integration Technique (FIT) - a
generalized FDTD-like method - to analyze resonant struc-
tures. Rather than performing time-consuming time-stepping
of long transients, the eigenmodes of the spatial discretiza-
tion operators are utilized to extract frequency-domain pa-
rameters of the simulated devices. As an application we cal-
culate averaged material parameters of recently proposed so-
called metamaterials, which show a distinctive resonant be-
havior with negative permittivity and permeability in a cer-
tain frequency range.

I. INTRODUCTION

Grid-based simulation methods like the Finite Differ-
ence Time Domain (FDTD) method, Finite Element (FE)
approaches or the Finite Integration Technique (FIT) — the
latter is used in this paper — are powerful tools for the
analysis of microwave devices. This is especially true for
time domain approaches, where broadband results e.g. for
the scattering parameters can be obtained by a single
simulation run with appropriate input signals.

However, new problems arise with the simulation of
highly resonant devices, where, due to the long settling
times, the time domain approach requires a large number
of time steps to reach steady state. If the goal of the simu-
lation is a precise prediction of the system's response near
a resonance, the use of approximate techniques, such as
introducing artificial losses or non-conservative time inte-
gration schemes, is not acceptable. On the other hand, a
conventional eigenvalue analysis (in frequency domain)
of the ‘closed’ structure, with short circuits at the in-
put/output ports, only gives a hint on the resonance fre-
quencies, but no quantitative results for the behavior of
the original (open) device around that frequency.

One example of such a resonant structure, which will be
dealt with in this paper, is the calculation of averaged ma-
terial coefficients in so-called metamaterials [1,2,3].
Metamaterials consist of a lattice of conducting, nonmag-
netic elements that can be described by an effective mag-
netic permeability y,sand an effective electrical permittiv-
ity &4, both of which can exhibit values not found in natu-
rally occurring materials. Typically each cell of the lattice

represents a resonant structure with spatial dimensions
much smaller than the incident wavelength. The effective
material parameters can then be defined as the ratios of
averaged field and flux quantities over one cell [1]. The
task for the numerical simulation is to extract these pa-
rameters from the electromagnetic fields over a certain
frequency range.

For the analysis of these resonant structures we present
here an efficient modal approach, which was previously
used for the calculation of scattering parameters in [4].
This method is based on an incomplete eigenvalue de-
composition of the spatial system matrix, and no time-
stepping has to be performed. As underlying discretization
scheme we use the Finite Integration Technique (FIT),
which can be considered as a generalized finite difference
method and which has close relations to the well-known
FDTD-method.

II. THE FINITE INTEGRATION TECHNIQUE (FIT)

A. Basics and Notation of FIT

Similar to the FDTD method, the Finite Integration
Technique [5,6] uses a pair of staggered grids, the primary -
grid G and the dual grid G, which however can have a
more general structure as the standard “Yee cell” of
FDTD. The state variables of FIT are so-called grid volt-
ages and grid fluxes which are defined as integrals of the
electric and magnetic fields on edges L, L, or faces

4, 4 of Gand G, respectively:

B.di,

o= B, b= ,

5.~=LD-d2, h= [ A-d =] Jd @

Using this kind of state variables, an exact representa-
tion of the integral form of Faraday's and Ampere's law
applied to facets of the grids can be found. In matrix-
vector form, the so-called Maxwell's Grid Equations [5]
read
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with the curl-matrix C and the vectors of voltages and

fluxes &h and 8,8,}, respectively. The approximations
of the method finally take place in the material matrices
(the discrete constitutive relations), given here for the lin-
ear case:
d=M2, b=M,h, j=M,e+]s 3

€

( }s = source currents). For dual orthogonal grid systems
M,, M, and M, are diagonal matrices.

If we apply FIT on Cartesian grids (the ‘Yee-cell’) and
use the leap-frog scheme for the time-integration of (2),
we obtain the same update equations as in FDTD. Thus,
(2) can be considered to describe also the spatial discreti-
zation of FDTD [6].

In frequency domain we can eliminate the magnetic
voltages h in (2) and obtain the discrete curl-curl-
equation (for the lossless case with M, =0 ):

(M;'C"M/C-w’De=-joM;' ;. @
Acc

It can be easily shown that the curl-curl system matrix
Acc has only real eigenfrequencies @, corresponding to
undamped oscillating resonant modes in lossless struc-
tures. It is a standard task of many electromagnetic simu-
lation codes to calculate the dominant eigensolutions of
Acc, ie. the resonant modes with lowest frequencies
®; >0 . These modes will be used in this paper to deter-
mine the averaged material quantities in a frequency range
around the resonance, thus avoiding a costly time domain
simulation with long transients until steady state.

For the simulation of metamaterials in time domain, we
would need an incident wave excitation as well as imple-
mentations of open and periodic boundary conditions.
Such open boundary conditions, if transformed back to
frequency domain, would introduce losses in our model,
leading to a complex system matrix and many difficulties
in solving the corresponding eigenvalue equation. How-
ever, we will demonstrate, that at least for a non-oblique
incidence of plane waves it is sufficient to consider only
one element of the lattice and the lossless formulation
given by (4).

B. Extraction of Effective Material Parameters

Once we have calculated a monofrequent field pattern
(a solution € of (4) for a given frequency and the related

vectors d,b,h ), the next step is to extract averaged field
quantities. This averaging process, motivated by a macro-
scopic view of the cells of the lattice {1}, is performed
according to (e.g. for the magnetic x-components)

Hx,av(w) = -l% '[L, ﬁ(w, F) : dF;
L - B ®)
Bo(@)=5- |, Blo,7)-dA

where L, and S, are the corresponding edge and the sur-
face of the cell, respectively. The related effective mate-
rial coefficient is finally defined by

By (@) = pig oy (@) H, (@) ©)

For the discrete solutions h(w) and b(w) =M, h(@)
the integrations in (5) can be represented by simple sum-
mations of specific voltage or flux components (cf. their
definition in (1)):

H, (@) = pLh(e),

Here the integration paths as well as the averaging coef-
ficients are included in the path vectors p,, (containing
only {0,£1/L,}) and pg, (containing only {0,+1/5,}).

B, (@) =pEM (@) . (7)

III. MODAL APPROACH

A. Basic Approach

In the modal approach [4], the solution of the curl-curl
equation (4) is expressed as a sum of (ortho-normalized)
eigenvectors of the system matrix:

@)= ag ®
with
AL e =o€ and eME, =5;. 9)

From (4) we obtain the simple formula for the unknown
coefficients a; :

10

Thus, instead of solving a linear system of equations for
each frequency point, we can also determine the eigenso-
lutions of the curl-curl system matrix and evaluate the
explicit formulas (10) and (8).

Of course, for an exact solution of (4) using this ap-
proach all eigensolutions of the system matrix would be
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needed. For realistic problem sizes this can not be
achieved, and we have to use the incomplete expansion

4
) = Y. a()8; + o (@) (n
1

with p «dim(A..) (typically p < 10..100) and a correc-
tion term €, (®) .

From the result for the coefficients o;(w) in (10) it is
obvious, that the dominant modes (having the strongest
frequency dependency) are as expected those with reso-
nance frequencies @, ~w, and as a minimum a certain
number of these modes must be considered in the expan-
sion. Moreover, the contribution of the remaining (non-
considered) modes can be assumed to be approximately
constant in the near of the resonance. This leads to a sim-
ple correction approach, where a constant €, is calcu-
- lated as a solution of (4) at a fixed frequency within the
range of interest. Since a good start vector for an iterative
solvers is available with the modal part of (11), this solu-
tion of a system of equations is computationally cheap.

A more sophisticated correction approach, involving the
solution of a second eigenvalue problem with varied
boundary conditions, has been proposed in [4].

B. Excitation Strategy

The extraction of effective material parameters requires
a monofrequent field solution in the lattice, or at least in
one cell of the lattice (from a simulation including peri-
odic boundaries.)

The simplest case of an appropriate setup is shown in
Fig. 1: The periodicity in the transversal directions is real-
ized by two pairs of magnetic (PMC) and electric (PEC)
boundary conditions, respectively. Thus, the field pattern
of the exciting planar wave is equivalent to a waveguide
excitation (parallel plate guide) of the structure.

PMC

Fig. 1. Modeling of the periodic lattice by a single cell with
appropriate boundary conditions and excitations.

This setup allows to model the cell as a two-port-device
with generalized input currents i, and #,, and output volt-
ages u;, and u,, respectively. To obtain a periodic solution
in the direction of the incident wave, these port quantities
must satisfy

uy=up-e®,  p=-ij-e, (12)
with @=k-I, the phase angle of the wave and /, the

length of one cell. Using

W) _(Zu Zn i a3)
w-e® ) \Zy Zpf\-ij-e)

where the system’s impedance matrix Z can readily be
calculated by the modal approach above, this leads to the
dispersion relation between k and @ of the macroscopic

wave:
ity g [2o1 = Zu@+Zp(@) .
e rEN L = ) (14)

Note that here also complex wave numbers k (describing
attenuated waves) are allowed, and the sign in (14) has to
be chosen accordingly.

The exciting current distribution at the port planes is
calculated from the magnetic field pattern of the 2D
waveguide mode (solution of a related discrete eigenvalue
problem for its cross-section).

C. Metamaterial Simulation

Now we have all components to perform the simulation

of the metamaterials:

1) Determine the discrete mode pattern at the port
planes of one cell of the array, and transform them
into equivalent surface currents.

2) Calculate a number of 3D eigenmodes of the cell
with PMC boundaries of at the ports.

3) Calculate the correction vector(s).

4) For each frequency:

a) Calculate the impedance matrix from the mo-
dal approach using (10) and (11).

b) Calculate the phase angle according to (14)
and construct the input currents at both ports.

c) Calculate field solutions for this excitation.

d) Extract averaged fields and calculate material
parameters &,gand g

The main computational cost in this procedure is due to
the solution of the 3D eigenvalue problem (step 2). Once
the coupling coefficients &/ j, between these modes and
the excitation currents are available, the remaining steps
require neglectible computation time for an arbitrary
number of frequency points. By a proper implementation
of the formulas it can even be achieved that the field solu-
tions (step 4c) need not be explicitly constructed and
stored.
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II. NUMERICAL RESULTS

Fig. 2 (taken from [3]) shows a metamaterial consisting
of an array of split ring resonators (SRRs) and accompa-
nying wires, which has been subject to measurements as
well as simulations before ([3], and in a simplified form in

[2]). In the grid model — all simulations are based on the -

commercial code CST MICROWAVE STUDIO (MWS, [7]) -
one cell of the lattice is discretized with a rather coarse
mesh with only 1,980 grid points (also shown in Fig. 2).
Due to the small dimensions of the SRR, this is still
equivalent to more than 100 lines per wavelength. To be
able to model the geometric details of the SRR in this
mesh we apply the PBA™-technique incorporated in
MWS.

Fig. 2.

SRR-type metamaterial (taken from ([3]) and one cell
of the array in the simulation model.

As a reference we performed an eigenmode analysis
(with the same grid model) with periodic boundaries, as
described in [2]. Here a complex hermitian eigenmode
problem has to be solved several times for a varying phase
angle ¢ between 0 to 180°. From the eigenfrequencies one
gets the dispersion relation w(k), and the eigenvectors can
be used for the material averaging.

In the modal approach (with and without correction
term) between 1 and 12 eigenmodes are used. Like in {2],
models with and without the wire have been studied.

The resulting curve for the effective permeability (cf.
Fig. 3) shows the desired resonance at approximately
3.66 GHz. It turns out, that with the correction term one
single mode is sufficient to reproduce the frequency be-
havior of a4 whereas without correction at least 10
modes are needed for an accurate result. The agreement
with the reference is very good.

II. CONCLUSIONS

For the computation of effective material parameters in
metamaterials a modal approach in combination with the
Finite Integration Technique (or FDTD) has been pre-
sented. The field solution in single cells of the array is
constructed by an incomplete expansion in eigenmodes of

the closed structure. For the highly resonant behavior of
metamaterials the new method turns out to be superior to
time domain methods, since only a small number of
modes is needed to reproduce the typical resonance
curves. It has also been demonstrated that a correction
term compensating the missing modes is very important to
obtain accurate results with moderate cost.

Real part of averaged permeability

Modal (1,5,12 modes)
10}t Reference 1

20} X

3535 37 385 39 4
f1Ghz

Fig. 3.  Simulation results: Real part of the effective perme-
ability Re{p.q}: Reference solution (periodic eigenvalue analy-
sis), modal approach with correction and varying number of
considered eigenmodes (indistinguishable curves).
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